El reto de 2019

Una vuelta cada 50 años

¡Por fin llegó TU NOCHE! Tu observación, tus datos, tus hipótesis, tus conclusiones... y tu oportunidad para convertirte en un cazador. Es el momento de poner en práctica todo lo que Daniel, Alba, Quim y Leyre te han enseñado. ¡Suerte!

¿A qué te enfrentas?

Este es el sistema binario PSR J2032+4127/ MT91 21 formado por un pulsar y una estrella Be:

Crédito de la imagen: NASA

El pulsar se descubrió en el 2009 con Fermi, pero ya en el 2002 HESS observó emisión de rayos gamma desde esa posición. En ese momento no se conocía emisión desde ese punto en cualquier otra longitud de onda y a la fuente se le llamó: TeV J2032+4130. No fue hasta el 2015 que se descubrió que el pulsar formaba parte de un sistema binario que tiene un periodo de 50 años y da la casualidad que en Noviembre del 2017 se produjo el periastro, el momento de esos 50 años en el cual los dos objetos del sistema binario están más cerca.

¿Cómo atacarlo?

Tenemos datos de TeV J2032+4130 que hemos tomado durante varios años. Para cada evento, tenemos Energía, Hadroness, Theta Cuadrado, posición en la cámara respecto la posición del pulsar, el tiempo en el que llegó el rayo gamma (el día según la convención de día Juliano Reducido, segundo y ms) y a qué fase del púlsar del Cangrejo corresponde este tiempo. Con estos datos puedes:

  • Mirar si TeV J2032+4130 emite rayos gamma
  • Buscar si hay alguna otra fuente en el campo de visión
  • Estudiar si la cantidad de rayos gamma que nos llegan desde TeV 2032 cambia con el tiempo
  • Mirar si hay algo diferente en Noviembre del 2017
  • Ver si el pulsar también emite rayos gamma

Si ya has pasado por las otras 4 noches, nuestros cazadores te habrán explicado como hacerlo. Ahora es el momento en el que tú también seas una Cazador de Rayos Gamma. Si tienes alguna duda o no te acuerdas de como hacer alguna cosa, siempre puedes volver a visitar a Daniel, Alba, Quim y Leyre en sus noches o preguntarlo en la página de comentarios de la derecha.

Y, por supuesto, si quieres hacer algo más con los datos la libreta de la derecha es toda tuya para probar lo que más te apetezca. Eso si, no olvides explicar los que haces de alguna forma (una presentación, un código, un video mientras usas la aplicación web,…) y enviárnoslo si quieres participar en el sorteo para pasar ¡una noche de verdad en los telescopios MAGIC!

¡TU TURNO!

Entra

Tu libreta científica

Por fin llego el momento … ahora la libreta es toda tuya.

Solo le hemos puesto la instrucción que se necesita para que lo gráficos que hagas se puedan ver (%matplotlib inline) y la instrucción para leer los ficheros de datos ya que adivinar donde están los datos no es trabajo de un científico cazador de gammas sino de magos!

El resto es cosa tuya. Eso si, no dudes en preguntar cualquier cosa …

¡Mucha suerte y, sobretodo, disfrúta!

import pandas as pd
import numpy as np
import matplotlib.pyplot as pl
%matplotlib inline
TeV_OFF= pd.read_csv('EvtList_OFF_TeV2032.txt', sep=' ')
TeV_ON= pd.read_csv('.EvtList_ON_TeV2032.txt', sep=' ')

Entra y empieza tu investigación!

Diccionario del buen cazador


Agujero Negro

Nos encanta todo lo desconocido y los secretos que alberga un agujero negro son muchos

Se trata de un objeto astronómico supermasivo que muestra unos efectos gravitacionales enormes de manera que nada (ni partículas ni radiación electromagnética) puede superar de su horizonte de sucesos. Es decir, nada puede escapar de su interior.


Blazar

No, no es un 'blazer', no nos vamos de tiendas

Se trata de un tipo particular de núcleo galáctico activo, con la característica que su jet apunta directamente a la Tierra. En una frase, es una fuente de energía muy compacta asociada a un agujero negro en el centro de una galaxia que nos está apuntando.


Cascada de partículas

¡Las cataratas del Niágara de las partículas!

Lluvia de partículas resultantes de la interacción entre partículas de alta energía con un medio denso, por ejemplo, la atmósfera terrestre. Cada una de estas partículas secundarias producidas crea a su vez un cascada propia, de manera que se acaban produciendo una gran cantidad de partículas de baja energía.


Covariancia de Lorentz

Los privilegios de ciertas ecuaciones...

Esta propiedad la tienen ciertas ecuaciones físicas por la que no cambian de forma cuando se dan ciertos cambios de coordenadas. La Teoría Especial de la Relatividad requiere que las Leyes de la Física deben tomar la misma forma en cualquier sistema de referencia inercial. Es decir, si tenemos dos observadores cuyas coordenadas se pueden relacionar por una transformación de Lorentz, cualquier ecuación con magnitudes covariantes se escribirá igual para ambos.

Descubre más:


Dualidad Onda Partícula

¿En qué quedamos?

Se trata de un fenómeno cuántico por el cual en ciertas ocasiones las partículas adquieren características propias de una onda. Y al revés. Lo que esperaríamos que se comportara siempre como una onda (por ejemplo la luz) a veces lo hace como una partícula. Este concepto fue introducido por Louis-Victor de Broglie y se ha demostrado experimentalmente.

Descubre más:


Evento

Estos sí son los eventos del año

Cuando hablamos de eventos en este campo, nos referimos a cada una de las detecciones que hacemos en los telescopios. Para cada uno de ellos tenemos cierta información como la posición en el cielo, la intensidad, etc. y eso nos permite clasificarlos. Nos interesa tener muchos eventos para que podamos hacer estadística a posteriori y sacar conclusiones.


Galaxia de Núcleo Activo

La fiesta está dentro

Este tipo de galaxias (conocidas como AGN) tienen un núcleo central compacto que genera mucha más luminosidad de lo habitual. Se cree que esta radiación es debida a la acreción de materia en un agujero negro supermasivo situado en su centro. Se trata de las fuentes persistentes más luminosas conocidas en el Universo.

Descubre más:


Gravedad Cuántica

Esto cada vez suena peor...

Este campo de la física pretende unir la teoría cuántica de campos, que aplica los principios de la mecánica cuántica a los sistemas clásicos de campos continuos, con la relatividad general. Se quiere definir una base matemática unificada con la cual se puedan describir todas las fuerzas de la naturaleza, la Teoría del Campo Unificado.

Descubre más:


Materia Oscura

¿Y qué será?

¿Cómo definir algo que no se conoce? Sabemos de su existencia porque la detectamos de forma indirecta gracias a los efectos gravitacionales que causa en la materia visible, pero no podemos estudiarla de forma directa. Esto es así porque no interacciona con la fuerza electromagnética así que no sabemos de qué está compuesta. ¡Y estamos hablando de algo que representa el 25% de todo lo conocido! Así que más vale no despreciarlo e intentar desentrañar que es…

Descubre más:


Microquasar

Más abajo aprenderás qué es un quasar... pues lo mismo ¡en pequeñín!

Es un sistema de estrellas binario que produce radiación electromagnética de alta energía. Sus características son similares a las de los cuásares, pero a una escala más pequeña. Los microquasars producen emisiones de radio fuertes y variables muchas veces en forma de jet y tienen un disco de acreción rodeando un objeto compacto (agujero negro o estrella de neutrones) que es muy luminosos en el rango de los rayos X.

Descubre más:


Nebulosa

¿Qué forma tienen las nubes?

Las nebulosas son regiones del medio interestelar compuestas básicamente por gases y algunos elementos químicos en forma de polvo cósmico. En ellas nacen muchas de las estrellas por condensación y agregación de materia. A veces sólo se trata de restos de estrellas extinguidas.

Descubre más:


Pulsar

Ahora me ves, ahora no me ves

La palabra ‘pulsar’ viene del ingles pulsating star y es precisamente esto: una estrella de la cual nos llega señal de forma discontínua. Dicho más formalmente, es una estrella de neutrones que emite radiación electromagnética mientras esta girando. Las emisiones son debidas al fuerte campo magnético que tienen y el pulso está relacionado con el período de rotación del objeto y la orientación relativa a la Tierra. Uno de los más conocidos y estudiados es el púlsar de la Nebulosa del Cangrejo, muy bonita, por cierto.

Descubre más:


Quasar

'Quasi' los confundimos con estrellas

Son los miembros más lejanos y más energéticos de una clase de objetos llamados galaxias de núcleo activo. Su nombre proviene del inglés ‘quasi-stellar’, casi estrellas, ya que, cuando se descubrieron, utilizando instrumentos ópticos, era muy difícil distinguirlas de las estrellas. No obstante, su espectro de emisión era claramente singular. Normalmente han sido formados por la colisión de galaxias cuyos agujeros negros centrales se han fusionado para formar un agujero negro super masivo o un sistema binario de agujeros negros.

Descubre más:


Radiación Cherenkov

Este fenómeno con nombre de malo de James Bond es nuestro máximo objeto de estudio

Radiación electromagnética emitida cuando una partícula cargada pasa a través de un medio dieléctrico a una velocidad mayor que la velocidad de fase de la luz en ese medio. Cuando un fotón gamma muy energético o un rayo cósmico interactúa con la atmósfera terrestre, producen una cascada de partículas de alta velocidad. La radiación Cherenkov de estas partículas cargadas se usa para determinar la fuente e intensidad de los rayos cósmicos o los gammas.

Descubre más:


Rayo Cósmico

Hay que saber escoger entre ¡rayos, partículas y centellas!

Los rayos cósmicos son radiación de alta energía compuesta fundamentalmente por protones muy energéticos y núcleos atómicos. Viajan casi a la velocidad de la luz y cuando impactan con la atmósfera terrestre producen cascadas de partículas: estas partículas generan radición Cherenkov y algunas incluso pueden llegar a la superficie de la Tierra. Pero cuando los rayos cósmicos alcanzan la Tierra, es imposible saber su procedencia ya que su trayectoria ha cambiado porque se han desplazado a través de distintos campos magnéticos.

Descubre más:


Rayo Gamma

¡A por ellos!

Radiación electromagnética ionizante de extrema frecuencia (por encima de los 10 exahertz). Se trata del rango más energético del espectro electromagnético. La dirección con la que llegan a la Tierra nos indica la dirección donde se originaron.

Descubre más:


Remanente de supernova

Una gran nube de caramelo en el cosmos

Cuando explota una estrella (supernova) se crea una estructura nebulosa a su alrededor formada por el material eyectado de la explosión junto con material interestelar.

Descubre más:


Telescopio Cherenkov

Nuestros juguetes favoritos

Son detectores de fotones gamma de altas energías situados en la superficie terrestre. Tienen un espejo para recoger la luz y focalizarla hacia la cámara. Detectan luz producida por el efecto Cherenkov desde el azul hasta el ultravioleta del espectro electromagnético. Las imágenes que toma la cámara permiten identificar si la partícula incidente en la atmósfera es un rayo gamma u otra distinta y a la vez determinar la dirección y su energía. Los telescopios MAGIC en el Roque de los Muchachos (La Palma) son un ejemplo.

Descubre más:


Teoría de la Relatividad

En esta vida todo es relativo ¿o no?

Albert Einstein fue el genio que decidió darle la vuelta a la mecánica newtoniana para hacerla compatible con el electromagnetstmo con sus Teorías de la Relatividad Especial y General. La primera es aplicable al movimiento de los cuerpos en ausencia de fuerzas gravitatorias y en la segunda se reemplaza la gravedad newtoniana con fórmulas más complejas aunque para campos débiles y velocidades pequeñas coincide numéricamente con la teoría clásica.

Descubre más: